On the duality of strong convexity and strong smoothness: Learning applications and matrix regularization
نویسندگان
چکیده
We show that a function is strongly convex with respect to some norm if and only if its conjugate function is strongly smooth with respect to the dual norm. This result has already been found to be a key component in deriving and analyzing several learning algorithms. Utilizing this duality, we isolate a single inequality which seamlessly implies both generalization bounds and online regret bounds; and we show how to construct strongly convex functions over matrices based on strongly convex functions over vectors. The newly constructed functions (over matrices) inherit the strong convexity properties of the underlying vector functions. We demonstrate the potential of this framework by analyzing several learning algorithms including group Lasso, kernel learning, and online control with adversarial quadratic costs.
منابع مشابه
Applications of strong convexity--strong smoothness duality to learning with matrices
It is known that a function is strongly convex with respect to some norm if and only if its conjugate function is strongly smooth with respect to the dual norm. This result has already been found to be a key component in deriving and analyzing several learning algorithms. Utilizing this duality, we isolate a single inequality which seamlessly implies both generalization bounds and online regret...
متن کاملWEAK AND STRONG DUALITY THEOREMS FOR FUZZY CONIC OPTIMIZATION PROBLEMS
The objective of this paper is to deal with the fuzzy conic program- ming problems. The aim here is to derive weak and strong duality theorems for a general fuzzy conic programming. Toward this end, The convexity-like concept of fuzzy mappings is introduced and then a speci c ordering cone is established based on the parameterized representation of fuzzy numbers. Un- der this setting, duality t...
متن کاملConvexity Properties Associated with Nonconvex Quadratic Matrix Functions and Applications to Quadratic Programming
We establish several convexity results which are concerned with nonconvex quadratic matrix (QM) functions: strong duality of quadratic matrix programming problems, convexity of the image of mappings comprised of several QM functions and the existence of a corresponding SLemma. As a consequence of our results, we prove that a class of quadratic problems involving several functions with similar m...
متن کاملLearning Exponential Families in High-Dimensions: Strong Convexity and Sparsity
The versatility of exponential families, along with their attendant convexity properties, make them a popular and effective statistical model. A central issue is learning these models in high-dimensions, such as when there is some sparsity pattern of the optimal parameter. This work characterizes a certain strong convexity property of general exponential families, which allow their generalizati...
متن کاملOn the Linear Convergence of the Proximal Gradient Method for Trace Norm Regularization
Motivated by various applications in machine learning, the problem of minimizing a convex smooth loss function with trace norm regularization has received much attention lately. Currently, a popular method for solving such problem is the proximal gradient method (PGM), which is known to have a sublinear rate of convergence. In this paper, we show that for a large class of loss functions, the co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009